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A new method is presented for calculating the scattering of an arbitrary electromagnetic 
wave by a bounded, perfectly conducting body of general shape. The strategy is to replace the 
corresponding exterior boundary-value problem by an approximate problem on the boundary 
of the scattering body. This involves the introduction of a certain bilinear form and non-local 
boundary operator, together with the use of a special class of known solutions of the reduced 
Maxwell’s equations satisfying the Sommerfeld radiation boundary conditions at infinity. Two 
computer programs implementing this method are described and numerical results showing 
the successful application of this method to some model problems are presented. 

1. INTR~OUCTI~N 

The numerical calculation of scattering by an arbitrarily shaped perfect conductor 
or dielectric body has received much attention in recent years. The problem is 
important in many areas including the design of missile fuses, the assessment of 
damage by an electromagnetic pulse, and the study of the biological effects of 
microwave radiation. Mathematically, the problem has the form of an exterior 
boundary-value problem for a system of elliptic partial differential equations. The 
problem has particular difficulties arising from the large number of unknowns, the 
unbounded domain, and the fact that the solution is oscillatory for large values of fre- 
quency. 

The principal techniques for the numerical solution of scattering problems are the 
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method of integral equations, and the finite-difference or finite-element method. We 
shall briefly discuss these methods. 

In the method of integral equations, one starts with a formulation of the boundary- 
value problem as an integral equation on the surface of the scattering body; the 
unknown may, e.g., be the current density on the surface. An excellent survey of such 
formulations, in the case of the reduced wave equation, is given in [ 11. The integral 
equation is solved numerically, either by using a collocation method or a Galerkin 
method (method of moments) to reduce the problem to a finite system of linear 
equations. The principal advantage of the method is that the dimension of the 
problem has been reduced; one must find a vector lield on the two-dimensional 
surface of the scattering body, instead of in the three-dimensional exterior region. 
(This advantage is lost in the case of inhomogeneous penetrable bodies; see, e.g., [3].) 
On the other hand, the system of linear equations has a full (non-sparse) coefficient 
matrix. Also, the integral equation contains a weakly singular kernel that comes from 
the fundamental solution of the problem; the resulting surface integrals may be 
difficult to evaluate with sufficient accuracy. Examples of the integral equation 
approach are contained in [2,3]. In particular, [2] contains an exposition of the 
Galerkin method for these problems. 

With the second method, the boundary condition at infinity is replaced by a 
boundary condition on the surface of a large sphere containing the scattering body. 
This approach is used in [4]. The resulting boundary-value problem is discretized by 
means of a finite-difference or finite-element method. This method has the advantage 
of producing a simple, sparse, coefficient matrix. On the other hand, the order of the 
matrix will be larger, because the unknown is now a vector field in a three- 
dimensional domain. A judicious use of graded meshes at a large distance from the 
scattering body will help alleviate this problem [5]. Examples of the use of finite 
differences or finite elements are contained in [6-81. In [8], the problem of a matrix 
of large order is overcome through the use of an iterative scheme for the solution of 
the linear system. 

The finite-element method is especially appropriate for the problem of penetration 
of electromagnetic fields into an inhomogeneous absorbing body. To treat such 
problems, one couples the finite-element procedure inside the body with an integral 
equation or other technique on the surface of the absorbing body. For some work on 
this, see [9-l 11. A particularly successful coupling technique has been developed by 
Waterman [ 12, 131. In Waterman’s method, the Stratton-Chu formula is used to 
represent the scattered electric field E’ in terms of integrals of the tangential 
components n x E’ and n x H’ of the electric and magnetic fields over the scattering 
surface. The free-space Green’s function enters into this representation. The elec- 
tromagnetic fields and Green’s function are expanded in a series of harmonic vector 
fields, and after truncating the series, a set of linear equations is obtained for the 
unknown coefficients in the expansion. This eliminates the singularity from the kernel 
of the equation and gives a representation of the approximate solution in terms of 
fields which already satisfy the differential equations of the problem. It should be 
noted, however, that although the resulting integrands no longer contain singularities, 
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they contain oscillating terms, and care in their evaluation is still required. Examples 
of further work along this line are contained in [ 14-161. 

The essence of the method proposed here may be described as follows: Let E’ and 
H’, respectively, be the electric and magnetic fields of the scattered wave, let E” and 
Ho represent the incoming electromagnetic wave, and let u and v represent any elec- 
tromagnetic wave which satisfies the outgoing radiation conditions. Since n x E’ = 
- II x E” on the boundary r of the scattering body 

4 
n x E’ . (1-l) 

r 

Equation (1.1) may be regarded as a way of imposing the boundary conditions using 
Galerkin’s method. If E’, H’ and u, v are restricted to a finite-dimensional collection 
of electromagnetic fields, the resulting finite system of linear equations given by (1.1) 
provides the approximate solution to the problem that is considered here. 

Our method has similarities to the method of Waterman, since we also use 
harmonic vector fields. Our formulation is different, however, since the Stratton-Chu 
formula is not used. We view the problem as a system of differential equations 
coupled with a complicated non-local boundary condition. A similar point of view is 
taken in [ 171. The principal difference between our approach and that of [ 171 is, in 
[ 171, which treats a two-dimensional problem, the non-local boundary condition is 
imposed on an auxiliary curve enclosing the scattering body. In our approach, the 
nonlocal boundary condition is imposed on the scattering body itself. This avoids 
having to introduce an extra finite-element procedure to approximate the field in the 
region between the scattering body and the auxiliary curve. 

The method presented here was first developed for the penetration problem [ 181 
and was described in a preliminary way in [ 19,201. 

2. MATHEMATICAL FORMULATION 

Let R be a bounded, perfectly conducting, three-dimensional domain with 
boundary r. We allow the possibility that Q is a disconnected domain, in which case 
r is a collection of disjoint closed surfaces. Let ~2, be the set of points not in R. We 
are given an incident electromagnetic wave E”, Ho of frequency o. Thus, taking out a 
time-harmonic factor of the form e-‘“‘, E” and Ho are vector fields defined in all 
space, which satisfy the reduced Maxwell’s equations 

VxE”=aHo, VxH’=/?E’. 

If the wave is propagating in a vacuum, a = iqu, and /I = -iaxo, where 
e. = 8.854 x lo-“F/m, ,u, = 1.257 x lop6 H/ m. In general, a = ia, and /I = -i/lo, 
where (x0, /I, are positive real numbers. Let E, H be the electromagnetic wave 
resulting from the scattering of the incident wave by the perfectly conducting body R. 
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Let E’ = E - E”, H’ = H - Ho be the scattered wave. Then, E(x), H(x) are defined 
for x E a,, and are determined by the set of equations’ 

VxE=aH, XER, (2.la) 

VxH=/?E, XER, (2.lb) 

Exn=O, XET (2.2) 

E’, H’ = O(r-‘), r-+co (2.3a) 

e, x E’ - aH1 = o(r-‘), t-+00 (2.3b) 

e, x H’ + SE’ = o(r-‘), r-+ 00. (2.3~) 

Here, n denotes the outward pointing unit normal to r, r = 1x1, and e, denotes the 
unit vector in the radial direction. 

System (2.la, b) comprises a system of six partial differential equations in the six 
unknowns consisting of the components of E and H. Equations (2.1-2.3) form an 
exterior boundary-value problem for this system; (2.2) is the boundary condition on 
r, and (2.3) are the boundary conditions at infinity. This problem has been treated, 
e.g., in [21], where it is shown that, for reasonable surfaces r and incident waves E”, 
Ho, the problem has a unique solution. 

It is convenient to discuss the boundary-value problem in terms of the scattered 
wave. For this, let f be a tangential vector field on r, and consider the boun- 
dary-value problem defined by 

VxE’=aH1, XEQ,, (2.4a) 

V x H’=pE’, XEfJ,, (2.4b) 

nxE’=f, x E r, P-5) 

and (2.3). From [21], it is known that this problem has a unique solution. If 
f = - n x E”, then the solution E’, H’ of (2.3)-(2.5) gives the scattered wave for the 
original problem. Thus, it suffices to solve (2.3)-(2.5). 

Let f be a tangential vector field on r. We define another tangential field Kf as 
follows. Let E’, H’ be the solution of (2.3-2.5), and let Kf = n x H’. The operator K 
maps tangential vector fields into tangential vector fields. We also define a bilinear 
form B on tangential vector fields. If f and g are two tangential vector fields on r, we 
define 

WC d = $r n.fxKgdI’. (2.6) 

The operator K and the bilinear form B are used in the formulation of our numerical 
method. We prove that the bilinear form is symmetric. 

’ We use here and in the sequel, the notation g(r) = O(y(r)), r--t 03, to mean I)(r)/v(r)/ Q C, r-+ 03. 
and 4(r) = o(y(r)), r + co, to mean #(r)/w(r) -+ 0, r -+ 03. 
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LEMMA 1. B(f, B) = w3,o 

Proof: Let E’, Hi be the solution of (2.3)-(2.5), and let E*, HZ be the solution of 
(2.3)-(2.5) with f replaced by g. Let B, be a ball of radius t with boundary S,. Let I 
be chosen so large that 0 c B,, and let a,,, = a, n B,. We have from (2.4a, b) 

pE’ . E2 - aH’ . H2 = V . (H’ x E2). 

Integrating this over a,,,, we obtain 

- n.H’xE2dT+ 
f .Q 

e’*H’xE2dT 
r sr 

= 
I 

[j?E’ . E2 - aH’ . HZ] dx. 
R0.r 

The first term on the left side is 

f 
n.E2xH’dr= n-gxKfdr=B(g,f). 

r P r 

The second term on the left side is 

f E2 l e, x H’&= -a$ E2 . E’dT+ 6(r), 
s, s, 

where, using (2.3a,c), 

Id(r)/ < 47rr2 * O(r-1) * o(r-1) -+ 0, r-0. 

Since B(g, f) is independent of r, it follows that the expression 

j~~~18.E2--(rHI.H2)dx+~~~~E1.E2d~ 

has a finite limit as r + co, and that 

B(g, 9 = lim 
r-cc 

(BEl.E2-aH’.H2)dxtJB~~~~E’.E2drl 

(2.7) 

W) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Since the right side of (2.12) is unchanged if E’, H’ and E2, HZ are interchanged, the 
left side of (2.12) is unchanged if f and g are interchanged, and the lemma is proved. 

The next lemma will be used in the next section to show that the finite system of 
equations which our method produces always has a solution. To state the result, we 
let .F denote the complex conjugate of a complex number z. 
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LEMMA 2. IfB(f, f) = 0, then f = 0. 

Proof. Set g = f in (2.12) and note that (r and /3 are imaginary. Then 

Re B(f, r) = (j3,/a,)‘~’ !\ir $s IE’ I* dT. (2.13) 

In particular, we find that the limit on the right side of (2.13) exists. Suppose B(f, 
f) = 0. Then 

lim 1 IE’I* dT=O. 
!I r+ac s, 

(2.14) 

It follows from a theorem of Rellich [21, Theorem 151 that E’ = 0. Hence, f = 0. 

3. THE APPROXIMATION SCHEME 

We describe our numerical method in terms of the scattered wave E’. Let g be any 
tangential vector field on r. Then, since n x E’ = - n x E” on r, we have 

n.E’xKg=nxE’.Kg=-nxE’.Kg=-n.E’xKg. 

Integrating this over r, and letting f denote the tangential component of E’ on r, we 
obtain 

WV 8) = -(jr n.EOxKgdT. 

This equation is the basis for our numerical method. We pick a finite-dimensional 
collection 9 of tangential vector fields on r, and we define our approximate solution 
fESP by 

neEoxKgdI’, gEY. (3.1) 

System (3.1) gives rise to a finite system of linear equations whose solution 
determines the vector field f E 9. This approximation scheme seems to suffer from 
two defects. It is not clear how to obtain the approximate scattered field in 0, from f, 
and it is not clear how to evaluate the operator K which appears in (3.1). These 
defects are overcome by a judicious choice of subspace, which we now describe. 

Let x* E Q be given, and let (r, 8, $) be a system of spherical coordinates with the 
origin at x*. In Stratton [22, p. 4161, a family of vector fields 

m emn~ m omn 3 n emn~ %nn~ m = 0, 1 ,..., n, n = 1, 2 ,.... (3.2) 
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is constructed which satisfy the following properties. 

(i) The fields are regular for x # x*, and, hence, are regular in 0,. 
(ii) The fields satisfy 

v x %?ln = vGiG%mn, v x %mn = d&E %mn 
Vxnemn=dGKmemn~ V x nomn = dGKmomn. 

(3.3) 

(iii) The fields satisfy (2.3). 

Note that we must take the Hankel functions zn@) = h,!,@) in Stratton’s formulas to 
satisfy (iii). 

We fix an integer N > 0, and let gN denote the collection of vector fields (3.2) for 
0 < ~tl< n, 1 < n < N. Let YJ denote the collection of tangential vector fields on r 
which are tangential components of vector fields U E qN. There are 2N(N + 2) 
linearly independent fields in PN. If g E PN, using (ii), we may easily calculate Kg. If 
f E YZ is the solution of (3.1), then f comes from a vector field U in 55”; the field U 
is the desired approximate scattered field, and may be easily evaluated at points of 
Q,. We have, therefore, shown how to overcome the defects of using (3.1). 

We now discuss the system of equations arising from the use of (3.1). We arrange 
the fields (3.2) of gN in a definite order and denote them by F,, 1 < ,u <M = 
2N(N + 2). We let f, = n x (F,Ir). Thus, the f,, 1 <p < M, are tangential vector 
fields on r which form a basis for 5$. Writing the desired solution f of (3.1) as 
f = Cc,, f, , we obtain the linear system 

5 c,B(f,.f,)=-4 n.E’xKf dr ” 3 l,<v<M. 
w=l r 

We set a,, = B(f,, f,), and we let A = [a,,] denote the coefficient matrix. We have 

THEOREM. The complex matrix A is symmetric, nonsingular, has nonsingular 
principal minors, and admits a factorization A = LU. 

Proof: The symmetry of A follows from Lemma 1. The nonsingularity of A, and 
of the principal minors of A, follows from Lemma 2. The existence of the decom- 
position then follows from the arguments of [23, Theorem 3.11. (Note, however, that 
A is complex and symmetric, not Hermitian.) 

Remark 1. By Lemma 1, the right-hand side of (3.1) is -B(E’, g) = --B(g, E”) = 
-(, n l g x ZCE’. Since the incident wave does not satisfy (2.3), however, KE” cannot 
be easily calculated, so this representation is not useful. 

Remark 2. An error analysis for the method proposed here will appear in a 
forthcoming paper. 
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4. COMPUTERIMPLEMENTATION 

Two computer programs, PCISH (Perfect Conduction In Spherical Harmonics) 
and PSYM (an axisymmetric version of PCISH), have been developed to implement 
the numerical scheme described in Section 3. PCISH is the more general of the two 
since it is capable of computing the electric (or magnetic) field resulting from the 
scattering of an arbitrary electromagnetic wave E”, Ho by a simply connected, 
perfectly conducting body Q of arbitrary shape. PSYM is an offshoot of PCISH 
which is designed to handle the specific class of problems in which the boundary of Q 
is a surface of revolution and the incident wave E”, Ho is a plane wave propagating 
along the axis of symmetry. 

In PCISH, it is assumed that the boundary of R can be suitably approximated by a 
closed surface which is the union of a number of quadrilaterals. The vertices of the 
quadrilaterals and information giving the assignments of vertices to quadrilaterals 
comprise a major portion of the input. Other input parameters are the frequency, 
orientation, and shape of the incident wave, the center and maximum order N of the 
subspace 5FN, the quadrature order, and the coordinates of the points in space at 
which the scattered field is to be calculated. The input to PSYM is similar (except for 
specifying the incident wave) but is much simpler since the user need .only supply a 
suitable number of points lying on a curve G which generates the boundary of Q by 
rotation about an axis of symmetry. The actual rotation of G is carried out implicitly 
by the program. 

Most of the computations performed by PCISH and PSYM center around the 
evaluation of the coefficient matrix and the right-hand side of the linear system (3.4). 
In view of the theorem, both PCISH and PSYM use Gauss elimination without 
pivoting to solve the matrix equation. 

As for the evaluation of the coefficient matrix and right-hand side, PCISH 
performs a two-dimensional quadrature (based on the trapezoidal rule) over each 
quadrilaterial of the surface representing the boundary of 52. PSYM, on the other 
hand, performs only a one-dimensional quadrature (also based on the trapezoidal 
rule) over a piecewise-linear arc approximating G, which is formed by joining the 
given input points on G by line segments. The reason that only a one-dimensional 
quadrature is necessary is that in the case in which r is a surface of revolution, the 
quadrature in the 4 direction has been carried out exactly by hand (requiring only the 
integration of some trigonometric polynomials) and the corresponding formulas 
placed in the program. 

The assumption that the boundary of 0 is a surface of revolution has another large 
advantage in that, due to certain symmetries which exist in this case, many of the 
matrix entries are zero. Moreover, if the incident wave E”, Ho is assumed to be a 
plane wave propagating along the axis of symmetry, certain of the right?hand side 
entries also become zero, and the original 2N(N + 2)-dimensional system reduces to a 
2N-dimensional system, where N is again the maximum order of the subspace FN. 
Instead of using all of the vector fields (3.2), with n = l,..., N, we may take subspaces 
generated only by the vector fields 
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m nelnT ollf, n = 1, 2 ,.,a, N. (4.1) 

The advantage of such a reduction is obvious, especially for large values of N. 
In order to evaluate the integrand in the bilinear form at each quadrature point, 

one needs to be able to calculate the Hankel functions h: and. the associated Legendre 
polynomials Pf used in the definition of the fields of (3.2). The Hankel functions 
hf, =j, + iy, are computed at a given point p > 0 using a backward recursion formula 
to calculate j,, the n th-order spherical Bessel function of the first kind, and a forward 
recursion formula to calculate y,, the nth-order spherical Bessel function of the 
second kind. One also needs certain derivatives of the hi and for these, we employ 
[24, (10.1.21)]. The Legendre polynomials and their derivatives are calculated using 
the recursion formulas [24, (8.5.3) and (8.5.4)]. 

Once the linear system has been solved by Gauss elimination, the approximate 
scattered field E’ is assembled and may be evaluated at any given point x in space. 
The relevant quantity for many applications is the radar cross section (RCS) defined 
by 

47rRz ) E’(x))’ 
o(x)= IE0(x)12 ’ 

where E”, Ho is the incident wave and R is the distance of the point x from the origin 
x*. To calculate the scattered field at infinity (i.e., the farfield) one takes the limit of 
(4.2) as R + co. Computationally, this is achieved by using an asymptotic form of 
the Hankel functions when the scattered field E’ is assembled from the solution of the 
linear system. 

5. NUMERICAL RESULTS 

Both PCISH and PSYM have been developed and executed on the CDC 6500 
computer located at NSWC/White Oak. These programs have been applied to a 
number of relatively simple model problems in order to test the program capabilities 
and to compare computed results with those found in the literature. Since all of the 
problems attempted to date have been axially symmetric, the more specialized 
program PSYM was used to obtain the numerical results presented below. 

As mentioned in Section 4, the maximum order N and center x* of the subspace 
%$. and the quadrature order are input parameters. In order to verify our results for a 
given body R, we manipulate these quantities in the following way: We first 
determine the proper value for N by successively increasing this parameter until the 
RCS stabilizes to some predetermined number of significant digits. However, since an 
increase in N causes an increase in the oscillation of the associated Legendre 
polynomials used in their definition, we must simultaneously increase the quadrature 
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FIG. 1. 

OOII’ 1 1 ’ 1 1 1 1 ’ ’ I ’ ’ 
0 1.0 20 3.0 4.0 50 6.0 70 

Zrra/k Sphere Ctrcumference in Wavelengths 

Backscattering of a plane wave by a sphere. 
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FIG. 2. Backscattering of a plane wave by a right circular cone. 
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FIG. 3. Near field scattering geometry. 
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FIG. 4. Frequency: 10 MHz, observer radius: 4 m. 
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10-I _ , , , I I I I , , 

0 60 120 160 240 300 360 
Aspect Angle 0 in Degrees 

FIG. 5. Frequency: 10 MHz, observer radius: 10 m. 

order to insure an accurate evaluation of the matrix system (3.4). For a given value 
of N, the quadrature order is increased until the RCS again stabilizes to a predeter- 
mined tolerance. Once these quantities have been determined, we perform a 
consistency check by varying the subspace center x*. Since this should in theory 
have no effect on the farlield profile, this seems to be a fairly rigorous test of the 
computed values. Obviously, for each new body R this process involves a number of 
program runs. Our experience has shown that the value of N required to obtain a 
given number of significant digits depends on the scattering body. Thus, for a 
particular problem, if too many significant digits are required, the cost may become 
prohibitive. It is hoped that a further investigation of our method will lead to a better 
understanding of the interplay among these various quantities and their relationship 
to the other relevant parameters of the problem. 

In the case in which R is a perfectly conducting sphere, an exact solution is known 
and can be found in many classical texts on electromagnetic theory (see e.g., [22]). 
PSYM produced extremely good fat-field backscattering results in this case, even well 

0 60 120 180 240 300 360 
Aspect Angle @ in Degrees 

FIG. 6. Frequency: 10 MHz, farfield. 
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IO2 j 
0 60 120 160 240 360 

Aspect Angle e in Degrees 

FIG. 7. Frequency: 50 MHz, observer radius: 4 m. 

into the resonance region (where the wave length is of the same order of magnitude as 
a characteristic dimension of a), as can be seen by comparing Fig. 1 with a similar 
plot obtained from the exact solution (see [25, p. 1481). A value of N = 8 was used to 
obtain this data, and two significant digits of accuracy were obtained for the RCS. 

The case in which B is a right circular cone is also studied in the literature 125 1. 
For our tests, we used a right circular cone circumscribed about a 1 m sphere with a 
15’ half-angle at the vertex. The plane wave E”, Ho was incident upon the vertex and 
propagated along the axis of symmetry. Fig. 2 shows the farfield backscattering 
results produced by PSYM in the Rayleigh region (where the wave length is large in 
comparison to a characteristic dimension of a) and extending a short way into the 
resonance region. These results seem to agree with other computed and experimental 
results reported in [25] (in particular see figure [25, p. 3921). Using the consistency 
checks described above, the value N = 30 was found to be satisfactory, and was used 
to obtain the information for Fig. 2. Two significant digits of accuracy were obtained 
for the RCS. 

0 60 120 180 240 300 360 
Aspect Angle 8 in Degrees 

FIG. 8. Frequency: 50 MHz, farfield. 
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For some applications, it is desired to calculate the scattered field close to the body 
R. This presents no diffkulties for PSYM, and Figs. 4-8 display some partial results 
in this direction for the same conical scatterer as described above. For each of the 
frequencies 10 and 50 MHz (corresponding to 27ra/A = 0.273 and 1.365, respectively, 
in Fig. 2), the scattered field was evaluated on circles of various radii lying in the 
plane parallel to E” which contains the axis of symmetry of the cone (see Fig. 3). In 
order to obtain a fartield profile, calculations were also made on a circle, concentric 
with the other circlks, which had an effectively infinite radius. The frequency 50 MHz 
is in the resonance region, and the frequency 10 MHz is on the border between the 
Rayleigh and resonance regions (see [26]). 
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